——————————————————————————————
This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550- 30 22-1-0007
——————————————————————————————
Lorenz System:
dxdt=σ(y−x),dydt=x(ρ−z),dzdt=xy−βz
Lorenz System:
dxdt=σ(y−x),dydt=x(ρ−z),dzdt=xy−βz
Timeseries: x(t)
Periodic: σ=10.0, β=83, ρ=100
Lorenz System:
dxdt=σ(y−x),dydt=x(ρ−z),dzdt=xy−βz
Timeseries: x(t)
Periodic: σ=10.0, β=83, ρ=100
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1, b=0.2, c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1, b=0.2, c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1, b=0.2, c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1, b=0.2, c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1, b=0.2, c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1
c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1
c=14
Timeseries: z(t)
Periodic Rossler System
dxdt=−y−z,dydt=x+ay,dzdt=b+z(x−c)
a=0.1
c=14
Timeseries: z(t)
D(a,b)=min
D(a,b)=\min_{P}C(P)
D(a,b)=\min_{P}C(P)
D(a,b)=\min_{P}C(P)
D(a,b)=\min_{P}C(P)
D(a,b)=\sum_{e\in P}w(e)
D(a,b)=\sum_{e\in P}w(e)
D(a,b)=\sum_{e\in P}w(e)
D(a,b)=\sum_{e\in P}w(e)
D(a,b)=\sum_{e\in P}w(e)
D(a,b)=\sum_{e\in P}w(e)
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Diffusion Distance: P(i,j)=\frac{A(i,j)}{\sum_{k=1}^{|V|}A(i,k)}
t-random walk: P^t(a,b)
Lazy Transition Probability: \widetilde{\mathbf{P}} = \frac{1}{2}\left[\mathbf{P}(a, b) + \mathbf{I}\right]
d_t(a,b) = \sqrt{ \sum_{c \in V} \frac{1}{\mathbf{d}(c)} { \left[ \widetilde{\mathbf{P}}^t (a,c) - \widetilde{\mathbf{P}}^t (b,c) \right] }^2 }
Myers, Audun, and Firas A. Khasawneh. "Dynamic State Analysis of a Driven Magnetic Pendulum Using Ordinal Partition Networks and Topological Data Analysis."
Myers, Audun, and Firas A. Khasawneh. "Dynamic State Analysis of a Driven Magnetic Pendulum Using Ordinal Partition Networks and Topological Data Analysis."
Myers, A. D., Chumley, M. M., Khasawneh, F. A., & Munch, E. (2023). Persistent homology of coarse-grained state-space networks. Physical Review E, 107(3), 034303.
——————————————————————————————
This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550- 30 22-1-0007
——————————————————————————————
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |